Python, PostgreSQL, and psycopg2’s Dusty Corners

Last time I wrote code with psycopg2 was around 2006, but I was reacquainted with it over the past couple of weeks, and I wanted to make some notes on a couple of features that are not well documented, imho. Portions of this post have been snipped from mailing list threads I was involved in.

Calling PostgreSQL Functions with psycopg2

So you need to call a function. Me too. I had to call a function called ‘myapp.new_user’. It expects a bunch of input arguments. Here’s my first shot after misreading some piece of some example code somewhere:

qdict = {'fname': self.fname, 'lname': self.lname, 'dob': self.dob, 'city':, 'state': self.state, 'zip': self.zipcode}

sqlcall = """SELECT * FROM myapp.new_user( %(fname)s, %(lname)s,
%(dob)s, %(city)s, %(state)s, %(zip)s""" % qdict


There’s no reason this should work, or that anyone should expect it to work. I just wanted to include it in case someone else made the same mistake. Sure, the proper arguments are put in their proper places in ‘sqlcall’, but they’re not quoted at all.

Of course, I foolishly tried going back and putting quotes around all of those named string formatting arguments, and of course that fails when you have something like a quoted “NULL” trying to move into a date column. It has other issues too, like being error-prone and a PITA, but hey, it was pre-coffee time.

What’s needed is a solution whereby psycopg2 takes care of the formatting for us, so that strings become strings, NULLs are passed in a way that PostgreSQL recognizes them, dates are passed in the proper format, and all that jazz.

My next attempt looked like this:

curs.execute("""SELECT * FROM myapp.new_user( %(fname)s, %(lname)s,
%(dob)s, %(city)s, %(state)s, %(zip)s""", qdict)

This is, according to some articles, blog posts, and at least one reply on the psycopg mailing list “the right way” to call a function using psycopg2 with PostgreSQL. I’m here to tell you that this is not correct to the best of my knowledge.The only real difference between this attempt and the last is I’ve replaced the “%” with a comma, which turns what *was* a string formatting operation into a proper SELECT with a psycopg2-recognized parameter list. I thought this would get psycopg2 to “just work”, but no such luck. I still had some quoting issues.

I have no idea where I read this little tidbit about psycopg2 being able to convert between Python and PostgreSQL data types, but I did. Right around the same time I was thinking “it’s goofy to issue a SELECT to call a function that doesn’t really want to SELECT anything. Can’t callproc() do this?” Turns out callproc() is really the right way to do this (where “right” is defined by the DB-API which is the spec for writing a Python database module). Also turns out that psycopg2 can and will do the type conversions. Properly, even (in my experience so far).

So here’s what I got to work:

callproc_params = [self.fname, self.lname, self.dob,, self.state, self.zipcode]

curs.callproc('myapp.new_user', callproc_params)

This is great! Zero manual quoting or string formatting at all! And no “SELECT”. Just call the procedure and pass the parameters. The only thing I had to change in my code was to make my ‘self.dob’ into a object, but that’s super easy, and after that psycopg2 takes care of the type conversion from a Python date to a PostgreSQL date. Tomorrow I’m actually going to try calling callproc() with a list object inside the second argument. Wish me luck!

A quick cursor gotcha

I made a really goofy mistake. At the root of it, what I did was share a connection *and a cursor object* among all methods of a class I created to abstract database operations out of my code. So, I did something like this (this is not the exact code, and it’s untested. Treat it like pseudocode):

class MyData(object):
   def __init__(self, dsn): 
      self.conn = psycopg2.Connection(dsn)
      self.cursor = self.conn.cursor()

   def get_users_by_regdate(self, regdate, limit):
      self.cursor.arraysize = limit 
      self.cursor.callproc('myapp.uid_by_regdate', regdate)
      while True: 
         result = self.cursor.fetchmany()
         if not result:
         yield result

   def user_is_subscribed(self, uid): 
      self.cursor.callproc('myapp.uid_subscribed', uid)
      result = self.cursor.fetchone()
      val = result[0]
      return val

Now, in the code that uses this class, I want to grab all of the users registered on a given date, and see if they’re subscribed to, say, a mailing list, an RSS feed, a service, or whatever. See if you can predict the issue I had when I executed this:

    db = MyData(dsn)
    for id in db.get_users_by_regdate([joindate]):
        idcount += 1
        print idcount
        param = [id]
        if db.user_is_subscribed(param):
            print "User subscribed"
            skip_count += 1
            print "Not good"

Note that the above is test code. I don’t actually want to continue to the top of the loop regardless of what happens in production 🙂

So what I found happening is that, if I just commented out the portion of the code that makes a database call *inside* the for loop, I could print ‘idcount’ all the way up to thousands of results (however many results there were). But if I left it in, only 100 results made it to ‘db.user_is_subscribed’.

Hey, ‘100’ is what I’d set the curs.arraysize() to! Hey, I’m using the *same cursor* to make both calls! And with the for loop, the cursor is being called upon to produce one recordset while it’s still trying to produce the first recordset!

Tom Roberts, on the psycopg list, states the issue concisely:

The cursor is stateful; it only contains information about the last
query that was executed. On your first call to “fetchmany”, you fetch a
block of results from the original query, and cache them. Then,
db.user_is_subscribed calls “execute” again. The cursor now throws away all
of the information about your first query, and fetches a new set of
results. Presumably, user_is_subscribed then consumes that dataset and
returns. Now, the cursor is position at end of results. The rows you
cached get returned by your iterator, then you call fetchmany again, but
there’s nothing left to fetch…

…So, the lesson is if you need a new recordset, you create a new cursor.

Lesson learned. I still think it’d be nice if psycopg2 had more/better docs, though.

  • Alex

    Have you considered using SQLAlchemy on top of psycopg2? It hides lots of these details and is generally very nice to work with.

    (It’s not just an ORM — the SQL-bits of it is well worth it.)

  • m0j0

    If the ‘SQL-bits’ can be used without any ORM-like functionality, maybe it’s worth a look.

  • Steve Williams

    If you haven’t already been hit with this, don’t stuff arguments into an SQL command:

  • mordaunt

    I thought this would get psycopg2 to “just work”, but no such luck. I still had some quoting issues.

    what were the quoting issues? I thought parameterized queries never have quoting issues? o_O

  • m0j0

    I thought the same thing! But what wound up happening was *nothing* was quoted if memory serves. It’s not clear to me why a parameterized query would not be properly quoted, but a parameterized function call would. If you call curs.query after a callproc(), it just spits out the parameterized query with the variables bound, and it looks like what I’d expect to see from a parameterized ‘execute()’. Baffling.

  • Jay Freeman (saurik)

    I’d love to have seen the actual error messages you were getting from the select call. It is possible this is a typo just on the website (and that those are not copy/pastes of your attempts), but you are missing the close parenthesis for the function calls in your SQL queries.

  • devalentino

    Hey, I am wondering how to manage in case you need to call postgres procedure with array

    callproc_params = []
    for user in users:
    curs.callproc(‘myapp.new_user’, callproc_params)

    I am getting error like no function matched input params. Any trick here?